Annexure A, H59 Gas-Flow-Management™ Refuelling Station Overview, Standards Alignment & Risk Assessment for Refuelling Hydrogen Powered Vehicles

Category	ESSNA™ H59™	Standard Reference
Hydrogen Purity	The ESSNA™ H59™ station	SAE J-2719 "Hydrogen Fuel
	or ESSNA™'s™ scope of a	Quality for Fuel Cell
	retrofit strictly adheres to	Vehicles";
	the SAE J-2719 standard,	ISO 19880-8 "Gaseous
	with consistent reliable on-	hydrogen Fueling stations
	spec Fuel Cell Standard	— Part 8: Fuel Quality
	purity of 99.97% and CO <	Control";
	0.2 ppm. Our system	ISO 14687 "Hydrogen Fuel
	ensures hydrogen meets the	Quality – Product
	quality requirements	Specification"
	necessary for fuel cell	
	vehicles. ESSNA™ owns a	
	purification technology that	
	outperforms PSA (pressure	
	swing adsorption) and	
	meets the required fuel cell	
IID Di	standards.	04770604.0 (77.1)
HD Dispensing Capability	The ESSNA™ H59™ station	SAE J2601-2 "Fueling
	or ESSNA's™ scope of a	Protocols for Gaseous
	retrofit will be designed to	Hydrogen Powered Heavy
	meet SAE J2601-2 standard	Duty Vehicles";
	and complies with ISO	ISO 19880-1 "Gaseous
	19880-1, providing safe and	hydrogen Fueling stations
	efficient fueling protocols	— Part 1: General
	for heavy-duty hydrogen	requirements";
	vehicles. The station	ISO 19880-2 "Gaseous
	features HD Dispensing	Hydrogen—Fuelling
	Capability at 700 Bar (H70) and a compression capacity	stations Part 2: Dispensers and dispensing systems";
	to meet operational	ISO 19880-5:2019 "Gaseous
	objectives. The control	hydrogen — Fueling
	parameters relating to	stations — Part 5:
	fueling such as fueling	Dispenser hoses and hose
	speed, pre-cooling class,	assemblies";
	and final pressure are to be	ANSI/CSA-HGV 4.1 (ETL)
	determined, ensuring safe	"Hydrogen Dispensing
	hydrogen transfer. The	Systems";
	station may support higher	ANSI/CSA-HGV 4.2 "Hoses
	flow rates, up to 120 grams	for compressed hydrogen
	per second (g/s), to	fuel stations, dispensers
	accommodate the larger	and vehicle fuel systems";
	fuel requirements of heavy-	ANSI/CSA-HGV 4.3 "Test
	duty vehicles. The system	Methods for Hydrogen
	may be designed to achieve	Fueling Parameter
	fueling times of less than 20	Evaluation"
	minutes for larger vehicles	

with compressed hydrogen storage systems (CHSS) up to 70 kilograms. Compliance with J2601-2 standards for 700 bar (H70) fueling as well as ANSI/CSA-HGV 4.1 (ETL) will be demonstrated through fuel logs. Hot and Cold case scenarios are implemented to guarantee optimal performance under varying environmental conditions, preventing overheating and overfilling during refueling. Included components are confirmed / estimated to be hydrogen compressor and associated hydraulic unit, internal high-pressure storage pack, hydrogen heat exchanger, integrated dispenser, and hydrogen flowmeter. Hydrogen Station We would deliver the SAE J2799; ISO Communication, Control following in designing and 17268:2020; SAE J2600; Systems, Operational building a station (1) NFPA 2: NBIC: SCA Standards, and Safety implementation of SAE J-B51:2019; CAN/BNQ 1784-2799 communication 000:2008; AIAA Gprotocols to ensure 95-095:2004; ASME STP-PT-100% SOC fueling (state of 006:2007; ANSI/NACE charge), (2) the presence of TM0284-2016; IEC 61508 / a point-of-sale or data-IEC 61511; IEC 60079 logging system, and (3) Series; ISO 19880-1 Annex design adaptability to G; ISO 9001; ISO 14001 various configurations and pressures suitable for medium, heavy and lightduty vehicles. Implementing and installing a main electrical disconnect. nitrogen distribution panel, hydrogen-distribution sequencing instrumentation/valve panels, and safety devices (flame detection, hydrogen gas detection, emergencystop buttons, and pressure, temperature, and flow

	1	
	monitoring). The station	
	will also have warning red	
	strobe lights and audible	
	horns for abnormal	
	conditions. Additional	
	components include the	
	main electrical power and	
	control enclosure with a	
	dedicated HMI for on-site	
	monitoring and station	
	control, the process PLC	
	and safety system, and a	
	nitrogen distribution panel	
	with automatic switching	
	between primary and	
	secondary nitrogen sources.	
	Added: Functional safety lifecycle per IEC	
	61508/61511 with SIL	
	assignment for safety	
	instrumented functions	
	(SIFs); hazardous-area	
	electrical compliance per	
	IEC 60079; and a	
	documented compliance	
	program (inspection,	
	testing, maintenance) with	
	audit intervals ≤ 12 months,	
	including HAZOP/FMEA in	
	line with ISO 19880-1	
	Annex G.	
Optional LD Dispensing	ESSNA™ H59™ station or to	SAE J2601-1; ISO 19880-1;
Capability	meet the SAE J2601-1	ISO 19880-2; ISO 19880-
	standard and complies with	5:2019; ANSI/CSA-HGV 4.1;
	ISO 19880-1, providing safe	ANSI/CSA-HGV 4.2;
	and efficient fueling	ANSI/CSA-HGV 4.3
	protocols for light-duty	
	hydrogen vehicles. Optional	
	integration.	
Functional Safety (SIL/SIS)	Safety instrumented	IEC 61508 / IEC 61511 —
	systems shall comply with	Functional Safety Standards
	IEC 61508/61511 lifecycle	
	requirements. SIL targets	
	will be assigned, validated,	
	and verified using	
	quantitative risk	
	assessment; SIF proof-test	
	intervals and diagnostics	
	will be documented.	
	will be documented.	

Material Compatibility & Pressure Vessels	Cylinders, piping, and composite storage shall use materials compatible with hydrogen service and embrittlement resistance; fabrication and testing shall comply with ISO 11114, ISO 11120, and ISO 15869.	ISO 11114; ISO 11120; ISO 15869
Explosive Atmospheres (Hazardous Area Electrical)	All electrical/electronic equipment within classified areas shall meet IEC 60079 requirements for selection, installation, and protection methods (e.g., Ex d, Ex e, Ex i).	IEC 60079 Series — Explosive Atmospheres (ATEX)
Transport & Handling Standards	Portable and transportable hydrogen storage systems shall meet ISO 16111 (metal hydride), ADR, and DOT CFR 49 requirements for packaging, relief devices, and safe carriage.	ISO 16111; ADR 2023; DOT CFR 49
Risk Assessment & Continuous Compliance	Perform HAZOP and FMEA per ISO 19880-1 Annex G; maintain a formal inspection, testing, and maintenance program with audit intervals not exceeding 12 months. Maintain quality and environmental controls per ISO 9001 and ISO 14001.	ISO 19880-1 Annex G; ISO 9001; ISO 14001